Loading manuals...

MIFARE QR Code proximity reader PQ510M0W34 Manual


MIFARE QR Code proximity reader PQ510M0W34 Manual Image

MIFARE QR Code proximity reader User Manual

  • Introduction

    ON-PQ510M0W34 is a proximity reader which reads ISO 14443A contactless card/key tag and QR code then send out some standard data format for connecting to Wiegand input of the access control systems. The users may select the suitable models for connecting to dedicated controller PC for various applications.

  • Specification

 

RFID frequency 13.56KHz
Applicable cards Mifare 14443A S50/S70
 

 

Reading range

 

Card

 

Max. 6cm

Tag Max. 2.5cm
QR code 0~16cm
Output format Wiegand    34 bits
Power input 12 VDC
 

Standby / Operating current

128mA±10% @ 12 VDC

140mA±10% @ 12 VDC

Flash Yellow (Power On)
LED Red (Scanning)
Buzzer Scanned
Material ABS
Dimensions(L) ×(W) ×(H) 125 x 83 x 27mm / 4.9 x 3.3 x 1.1inch
Operating temperature -10℃~75℃
Storage temperature -20℃~85℃
  •  Installation Guide
  •  Drill a 8 mm hole on the wall for passing the cable.
  • Drill two 5 mm holes to fix the reader on the wall with provided screws.
  • Please make sure to connect wires correctly with the access controller.
  • Please use linear (not-switching) type power supply that is isolated from other devices.
  • Once you use a separate power supply for the reader, a common ground should be connected between the reader and the controller system.
  • For signal transmission, a shielding cable connecting to the controller will reduce the interference from the external environment.
  • Dimension: Unit:mm[inch]

Dimension: Unit:mm[inch]

  • Wire configuration
Function
J1
Wire No Color Function
1 Brown +12V
2 Red GND
3 Orange DATA0
4 Yellow DATA1
5 Green
6 Blue
7 Purple
8 Gray
  • Data formats

Wiegand 26 bits output format 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
E E E E E E E E E E E E E O O O O O O O O O O O O O
Summed for even parity(E) Summed for Odd parity(O)

Even parity “E” is generated by summing from bit1 to bit13; Odd parity “O” is generated by summing from bit14 to bit26.

Wiegand 34 bits output format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
E E E E E E E E E E E E E E E E E O O O O O O O O O O O O O O O O O
Summed for even parity(E) Summed for Odd parity(O)

C= Card number
Even parity “E” is generated by summing from bit1 to bit17; Odd parity “O” is generated by summing from bit18 to bit34.